同类推荐
-
-
深度强化学习算法原理与实战:基于MATLAB
-
¥109.00
-
-
Vibe编程:探索AI时代编程新范式
-
¥69.80
-
-
Kimi实战精粹
-
¥69.90
-
-
人工智能物联网应用:基于树莓派
-
¥49.00
-
-
人工智能物联网应用:基于树莓派
-
¥49.00
-
-
人工智能物联网应用:基于树莓派
-
¥49.00
-
-
人人都需要的通用智能体助手:Manus+扣子空间+秒哒…
-
¥79.00
-
-
AIGC基础与应用:微课版
-
¥68.00
-
-
这就是MCP
-
¥79.80
-
-
豆包实战精粹
-
¥69.90
|
|
图书信息
|
|
|
网络表示学习的理论与应用
|
ISBN: | 9787030778857 |
定价: | ¥128.00 |
作者: | 王静红著 |
出版社: | 科学出版社 |
出版时间: | 2024年12月 |
开本: | 24cm |
页数: | 213页 |
中图法: | TP181 |
相关供货商
供货商名称
|
库存量
|
库区
|
更新日期
|
北京人天书店有限公司
|
7
|
库区4/泰安展厅库/样本4
|
2025-08-28
|
其它供货商库存合计
|
202
|
|
2025-08-28
|
图书简介 | 本书介绍了在人工智能与大数据时代背景下,网络表示学习的理论与应用。提出了网络表示学习的关键在于将网络中的节点映射到低维空间,形成能够反映节点间复杂关系的向量表示。书中讨论了各种先进的网络表示学习方法,如基于图注意力机制、图自编码器和深度学习技术,并提供了大量实验和案例分析,展示了这些方法在不同数据集上的应用效果。这些案例覆盖了社交网络、生物信息学、知识图谱等领域,证明了网络表示学习技术在多样化场景中的适用性和有效性。通过系统的理论基础和丰富的实践案例,本书旨在帮助读者深入理解和应用网络表示学习。 |
|